Понятие отображения. Виды отображений

Пусть $X$ и $Y$ - два произвольных множества.

Определение. Соответствие, при котором каждому из элементов множества $X$ сопоставялется единственный элемент из множества $Y$, называется отображением.

Обозначение отображения из множества $X$ в множество $Y$: $X \stackrel{f}{\longrightarrow} Y$.

Множество $X$ называется областью определения отображения и обозначается $X=D(f)$.

$E(f)$ называется множеством значений отображения, и $E(f) = \{ y \in Y \; | \; \exists x \in X, y = f(x) \}$.

Множество $\Gamma(f)$ называется графиком отображения. $\Gamma(f)=\{(x,y) \in X \times Y, y=f(x), \forall x \in X, y \in Y \}$.

Пусть $f$ - некоторое отображение из множества $X$ в множество $Y$. Если $x$ при этом отображении сопоставляется $y$, то $y=f(x)$. При этом $y$ называется образом $x$, или значением отображения $f$ в точке $x$. А $x$, соответственно, прообразом элемента $y$.

Исходя из определения отображения, видно, что не требуется, чтобы все элементы в множестве $Y$ являлись образами какого-либо $x$ и при том единственного.

Пример.

Даны два множества $X=\{ с, е, н, т, я, б, р, ь \}$ и $Y=\{ 1, 2, 3, 4, 5, 9, 10, 11 \}$

Отображение из множества $X$ в множество $Y$ имеет следующий вид:

$\begin{matrix} \{ с, & е, & н, & т, & я, & б, & р, & ь \}  \\ \;\; \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow \;\; \\ \{ 1, & 2, & 3, & 4, & 5, & 9, & 10, & 11 \} \end{matrix}$

Определение. Совокупность всех элементов из множества $X$, образом которых является $y$ из $Y$, назвается полным прообразом $y$ из $X$. Обозначается: $f^{-1}(y)$.

Определение. Пусть $A \subset X$. Совокупность всех элементов $f(a)$, $a \in A$, называется полным образом множества $A$ при отображении $f$.

Определение. Пусть $B \subset Y$. Множество всех элементов из $X$, образы которых принадлежат множеству $B$, называется полным прообразом множества $B$.

Пример.

$X=Y=R$, $y=x^2$.

График параболы

$A=[-1; 1] \subset X$

Полный образ $f(A)=[0; 1]$

$B=[0; 1] \subset Y$

Полный прообраз $f^{-1}(B)=[-1; 1]$

Определение. Отображение $f$ называется инъективным отображением, если $\forall \; y \in Y$ $y=f(x)$ является образом единственного $x$.

Определение. Отображение $f$ называется сюръективным отображением, если все элементы в множестве $Y$ являются образами какого-либо $x$. (Это отображение множества $X$ на множество $Y$).

Определение. Отображение $f$ называется биективным, если оно инъективно и сюръективно, в противном случае такое отображение назвается взаимно однозначным соответствием.

Определение. Множества $X$ и $Y$ называются эквивалентными (равномощными), если они находятся во взаимно однозначном соответствии. Обозначается: $X Y$ (множество $X$ эквивалентно множеству $Y$ или множество $X$ равномощно множеству $Y$).

1.  Граф соответствия. Отображение. Инъективное, не сюръективное.

Граф соответствия

2. Не отображение.

Не отображение

3. Не отображение.

Не отображение

4. Отображение. Не инъективное, сюръективное.

Не инъективное, сюръективное отображение

5. Отображение. Инъективное, сюръективное $\Rightarrow$ биективное.

Инъективное, сюръективное, биективное отображение