Понятие отображения. Виды отображений
Пусть $X$ и $Y$ - два произвольных множества.
Определение. Соответствие, при котором каждому из элементов множества $X$ сопоставялется единственный элемент из множества $Y$, называется отображением.
Обозначение отображения из множества $X$ в множество $Y$: $X \stackrel{f}{\longrightarrow} Y$.
Множество $X$ называется областью определения отображения и обозначается $X=D(f)$.
$E(f)$ называется множеством значений отображения, и $E(f) = \{ y \in Y \; | \; \exists x \in X, y = f(x) \}$.
Множество $\Gamma(f)$ называется графиком отображения. $\Gamma(f)=\{(x,y) \in X \times Y, y=f(x), \forall x \in X, y \in Y \}$.
Пусть $f$ - некоторое отображение из множества $X$ в множество $Y$. Если $x$ при этом отображении сопоставляется $y$, то $y=f(x)$. При этом $y$ называется образом $x$, или значением отображения $f$ в точке $x$. А $x$, соответственно, прообразом элемента $y$.
Исходя из определения отображения, видно, что не требуется, чтобы все элементы в множестве $Y$ являлись образами какого-либо $x$ и при том единственного.
Пример.
Даны два множества $X=\{ с, е, н, т, я, б, р, ь \}$ и $Y=\{ 1, 2, 3, 4, 5, 9, 10, 11 \}$
Отображение из множества $X$ в множество $Y$ имеет следующий вид:
$\begin{matrix} \{ с, & е, & н, & т, & я, & б, & р, & ь \} \\ \;\; \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow \;\; \\ \{ 1, & 2, & 3, & 4, & 5, & 9, & 10, & 11 \} \end{matrix}$
Определение. Совокупность всех элементов из множества $X$, образом которых является $y$ из $Y$, назвается полным прообразом $y$ из $X$. Обозначается: $f^{-1}(y)$.
Определение. Пусть $A \subset X$. Совокупность всех элементов $f(a)$, $a \in A$, называется полным образом множества $A$ при отображении $f$.
Определение. Пусть $B \subset Y$. Множество всех элементов из $X$, образы которых принадлежат множеству $B$, называется полным прообразом множества $B$.
Пример.
$X=Y=R$, $y=x^2$.
$A=[-1; 1] \subset X$
Полный образ $f(A)=[0; 1]$
$B=[0; 1] \subset Y$
Полный прообраз $f^{-1}(B)=[-1; 1]$
Определение. Отображение $f$ называется инъективным отображением, если $\forall \; y \in Y$ $y=f(x)$ является образом единственного $x$.
Определение. Отображение $f$ называется сюръективным отображением, если все элементы в множестве $Y$ являются образами какого-либо $x$. (Это отображение множества $X$ на множество $Y$).
Определение. Отображение $f$ называется биективным, если оно инъективно и сюръективно, в противном случае такое отображение назвается взаимно однозначным соответствием.
Определение. Множества $X$ и $Y$ называются эквивалентными (равномощными), если они находятся во взаимно однозначном соответствии. Обозначается: $X Y$ (множество $X$ эквивалентно множеству $Y$ или множество $X$ равномощно множеству $Y$).
1. Граф соответствия. Отображение. Инъективное, не сюръективное.
2. Не отображение.
3. Не отображение.
4. Отображение. Не инъективное, сюръективное.
5. Отображение. Инъективное, сюръективное $\Rightarrow$ биективное.